Fluctuations and the Ridge from RHIC to LHC

George Moschelli

Frankfurt Institute for Advanced Studies

Sean Gavin

Wayne State University

RHIC & AGS Users Meeting, June 20, 2011

The Ridge

The Relation of v_n and Correlation Origins

$$\Delta \rho(\vec{p}_1, \vec{p}_2) = \iint_{positions} c(\vec{x}_1, \vec{x}_2) f(\vec{x}_1, \vec{p}_1) f(\vec{x}_2, \vec{p}_2) \qquad \text{Correlation function}$$

$$c(\vec{x}_1, \vec{x}_2) \propto \mathcal{R} \ \delta(\vec{x}_1 - \vec{x}_2) \ \rho_{FT}(\vec{x}_1, \vec{x}_2)$$
 Glasma flux tube correlations

The correlation function makes $\Delta \rho$ a convolution

$$\Delta \rho \propto 1 + 2\sum_{n=1}^{\infty} \langle v_n(p_{T1})v_n(p_{T2})\rangle \cos(n\Delta\phi)$$
 <...> = average over flux tube distribution

Fourier coefficients reveal spatial correlations

Fluctuating Initial Conditions + Flow

- •Correlated partons come from the same tube
- •Tube size $^{\sim}Q^{-2}_{s}$ the saturation scale
- •The correlation strength ${\cal R}$ depends on tube fluctuations

Flow boosts fluid cells based on their initial radial position

- Flow enhances the azimuthal distribution; cells starting at a large radius are pushed into a narrower $\Delta \phi$ opening angle.
- Initial correlations in space result in final correlations in momentum.

The Correlation Function

Event by event distribution $n(x_1)$

"("1)

Event average

Event average distribution $\langle n(x_1) \rangle$

$$c(x_1,x_2) = \langle [n(x_1) - \langle n \rangle] [n(x_2) - \langle n \rangle] \rangle$$

$$c(\vec{x}_1, \vec{x}_2) = \mathcal{R} \, \delta(r_t) \rho_{FT}(R_t)$$

Transverse Coordinates

$$\vec{r}_t = \vec{r}_1 - \vec{r}_2$$
 $\vec{R}_t = (\vec{r}_1 + \vec{r}_2)/2$

Glasma Dependence

Gluon Rapidity Density Kharzeev & Nardi

$$\frac{dN}{dy} = \frac{gluons}{tube} \times \langle N_{FT} \rangle \propto \langle N_{FT} \rangle \alpha_s^{-1} (Q_s^2)$$

Correlations of N_{FT} Flux Tubes : fluctuations in tube number

$$\mathcal{R} = \frac{Var(N) - \langle N \rangle}{\langle N \rangle^2} \propto \frac{1}{\langle N_{FT} \rangle}$$

Glasma Correlation Scale

$$\mathcal{R}\frac{dN}{dy} \propto \alpha_s^{-1} (Q_s^2)$$

Glasma Fluctuations scale long range correlations, depending only on the Q_s .

Dumitru, Gelis, McLerran & Venugopalan; Gavin, McLerran & GM

STAR preliminary analysis of both 200 and 62 GeV

Blast Wave Expansion

Boltzmann Distribution

$$f(\vec{x},\vec{p})=e^{-u^{\mu}p_{\mu}/T}$$

Hubble-like Expansion

$$\gamma_T \vec{v}_T = \lambda \vec{r}$$
 Radial Expansion only

$$\gamma_T \vec{v}_T = \epsilon_x x \hat{x} + \epsilon_y y \hat{y}$$
 Anisotropic Expansion

Momentum Distribution

$$\rho_1(\vec{p}) = \frac{dN}{dyd^2 p_T} = \int f(\vec{x}, \vec{p}) d\Gamma$$

Cooper-Frye Freeze Out

$$d\Gamma = p^{\mu} d\sigma_{\mu} = \tau_F m_T \cosh(y - \eta) d\eta d^2 \vec{r}$$

The Near Side Ridge Amplitude

$$\Delta \rho(\vec{p}_1, \vec{p}_2) = \text{pairs} - (\text{singles})^2$$

$$\Delta \rho(\vec{p}_1, \vec{p}_2) = \iint_{positions} c(\vec{x}_1, \vec{x}_2) f(\vec{x}_1, \vec{p}_1) f(\vec{x}_2, \vec{p}_2)$$

$$\frac{\Delta \rho}{\sqrt{\rho}} = \mathcal{R} \frac{dN}{dy} \frac{\iint \Delta \rho(\vec{p}_1, \vec{p}_2)}{\iint \rho_1(\vec{p}_1) \rho_1(\vec{p}_2)}$$
momenta

- Elliptic flow enhances correlations in peripheral collisions.
- Glasma correlation scale drops with centrality
- Error band from uncertainty in blast wave parameters and calculation of Q_s .
- A increased flow velocity is needed to explain the data.

FIND: ridge amplitude sensitive to blast wave velocity

Momentum Conservation

Correlation function

$$c_{mom}(\vec{p}_1, \vec{p}_2) = -\frac{2}{N_{tot}^{eff} \langle p_T^2 \rangle} \left(\frac{p_{1,x} p_{2,x}}{1 + v_2''} + \frac{p_{1,y} p_{2,y}}{1 - v_2''} \right)$$

$$v'' = \langle p_T^2 \cos(2\Delta \phi) \rangle / \langle p_T^2 \rangle$$

Borghini, PoS LHC07:013,(2007)

$$\frac{\Delta \rho_{mom}}{\sqrt{\rho}} = -\mathcal{A}_{mom} \cos(\Delta \phi)$$

- Global momentum conservation: N_{tot} includes undetected particles
- Effective correlation length: e.g. in peripheral collisions, all particles share momentum, and in central collisions, momentum is shared locally in rapidity by a smaller fraction of the total produced particles.

Fit Functions

"We shouldn't speak about the near side and the away side of the ridge as separate things." ~QM, Annecy

$$\frac{\Delta \rho}{\sqrt{\rho}}$$
 = Flux Tubes + Momentum Conservation + Elliptic Flow

$$\frac{\Delta \rho}{\sqrt{\rho}} = \text{Offset + Gaussian + A } \cos(\Delta \phi) + \text{B } \cos(2\Delta \phi)$$

Fit to Calculation

- Calculated offset must be zero or positive
- Given a fixed Gaussian width, only the offset is allowed to change
- Alternatively put constraints on the offset and fit the width.
- $\chi^2 < 1$
- Cos($2\Delta\phi$) amplitude from Blast Wave v_2 calculation fit to data
- Fourier fits may be easier to quantify.

Fit to Calculation

- Calculated offset must be zero or positive
- Given a fixed Gaussian width, only the offset is allowed to change
- Alternatively put constraints on the offset and fit the width.
- $\chi^2 < 1$
- Cos($2\Delta\phi$) amplitude from Blast Wave v_2 calculation fit to data
- Fourier fits may be easier to quantify.

Fit Functions II

$$\frac{\Delta \rho}{\sqrt{\rho}}$$
 = Flux Tubes + Momentum Conservation + Elliptic Flow

$$\frac{\Delta \rho}{\sqrt{\rho}} = \frac{a_0}{2} + a_1 \cos(\Delta \phi) + a_2 \cos(2\Delta \phi) + a_3 \cos(3\Delta \phi)$$

$$v_n \propto \sqrt{rac{a_n}{2\langle N
angle}}$$
 n>0

Fourier Fits to Calculation: Au-Au 200 GeV

$$\langle v_n^2 \rangle \propto \int \rho_{FT} \left[\int f(\vec{x}, \vec{p}) \cos(n\Delta\phi) \right]^2$$

V_2

- Geometry + Fluctuations.
- Error band from fitting
- Dashed line: Blast wave v₂

V_3

- Only from fluctuating sources.
- Simultaneous agreement with ridge amplitude

Fourier Fits to Calculation: Pb-Pb 2.76 TeV

- Blast Wave parameters: adjusted to fit v_2 and $\langle p_T \rangle v_s = 1.05v_s (200 \text{ GeV})$ $T_F = 1.1T_F (200 \text{ GeV})$
- Recall we needed $v_s = 1.21v_s(200 \text{ GeV})$ to explain the ridge amplitude.
- v_3 : Only from fluctuating sources. Fits v_3 {4} but not v_3 {2}. Missing components need to be investigated.
- Non-Flow correlations such as jets and resonance decays also need investigating.

Conclusion

CGC-Glasma Correlation Scale: $\mathcal{R} dN/dy$

- Long range rapidity correlations must be induced at early times.
- Gluon density per source (flux tube)
- Number of sources and distribution of sources
- Energy and centrality dependence

Glasma + Flow

- Final state correlations in momentum space based on initial correlations in position space come from a convolution of density distributions.
- The ridge amplitude is sensitive to anisotropic flow velocity.

"Does v₃ leave any room for a ridge?"

- Fluctuating sources + flow produce a ridge... and v_3 .
- Spatial correlations convolute momentum distributions.
- \bullet Agreement with ridge measurements at STAR yields comparable v_3 .

From RHIC to LHC:

- Ridge amplitude argues for large flow velocity in Pb-Pb 2.76 TeV.
- Simultaneous fitting of v_2 and $\langle p_T \rangle$ argue strongly for smaller flow velocity.
- v_3 from fluctuations underestimates measured $v_3\{2\}$ at ALICE, but agree with $v_3\{4\}$.

Fourier Fits to Calculation: Au-Au 200 GeV

• Offset: relatively flat with centrality until peripheral collisions. Could be a good measure of energy dependence.

$$\mathcal{R} = \frac{Var(N) - \langle N \rangle}{\langle N \rangle^2}$$
 Correlation Strength

- $\mathbf{v_1}$: Fluctuations Momentum conservation. Central collisions are at a similar scale to $\mathbf{v_3}$.
- **v**₂: Geometry + Fluctuations.
- $\mathbf{v_3}$: Only from fluctuating sources.

Fourier Fits to Calculation: Pb-Pb 2.76 TeV

- Blast Wave parameters: adjusted to fit v_2 and $\langle p_T \rangle$ $v_s = 1.05v_s(200 \text{ GeV})$ $T_F = 1.1T_F(200 \text{ GeV})$
- Recall we needed $v_s = 1.21v_s(200 \text{ GeV})$ to explain the ridge amplitude.
- $\mathbf{v_3}$: Only from fluctuating sources. Fits $\mathbf{v_3}\{4\}$ but not $\mathbf{v_3}\{2\}$. Missing components need to be investigated.
- Non-Flow correlations such as jets and resonance decays also need investigating.

